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Note 

Errors in the Numerical integration of a 
Linearized Equation for Particle Flows 

PARTICLE FLOW MODELING 

Particle laden and gas-droplet flows are common in a wide range of practical 
problems. Anyone who has driven a car through a bug infested region is familiar with 
the multiphase dynamics of insects in air. Large bugs impact, while small bugs slip 
over the roof. The difference in their fate is due to their differing response to changes 
in their slip velocity (slip velocity is the bug’s velocity relative to the air flow). 

When particles, droplets or bubbles are transported in an unsteady velocity field, 
determining the particle motion analytically is exceedingly difficult and numerical 
solutions are employed. In typical engineering problems the particle motion is a 
desired solution. 

Examples include dust ingestion in turbomachinery [ 1,2], solid propellant motion 
in rocket nozzles [3], raindrop impingement on aircraft surfaces [4], and pulverized 
coal combustion [5]. In each of these examples and in many others, the particles 
governing differential equations (namely Newton’s second law) are integrated in time 
over small steps. In the above analyses the drag force which is a function of slip 
velocity squared has been linearized. 

This linearization introduces errors, except in the case of a particle in Stoke’s flow 
(since here the drag force is a linear function of slip velocity). Most authors have 
inadverdently introduced errors in their particle integration by using the linearization. 
Now we will show how errors in the linearized equations may greatly exceed the 
global error of integration. A simple analysis indicates a new criterion for choosing 
the time step. In this way the economy of integrating a linear equation can be fully 
exploited. 

THE GOVERNING EQUATIONS 

As shown by Taylor [6] the motion of a dilute suspension of droplets or particles 
of density p moving with the velocity components u and v in a fluid of density p, 
flowing with the velocity components ur and ur can be approximated by: 

du @-u) g, 
--ii= r 

394 

(1) 

0021.9991/81/100394+05$02.00/0 
Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



LINEARIZATIONERRORSOF PARTICLEFLOWS 395 

where 

is constant for a given particle radius, 6, while 

g= CD q,W) 
24Vf 

is a function of the slip speed, 

qs = [(z+- 24)’ + (of- v>*]‘/*. 

These equations were first derived by Taylor in his work with raindrop 
impingement on aircraft wings. We have neglected lift, gravity, pressure, and Basset, 
Magnus and Brownian motion forces, since the vast majority of two phase flows are 
drag dominated. 

Clearly if g is considered a constant then the equation is linear. Physically this 
corresponds to assuming the particle’s Reynolds number is time invariant over an 
integration step. Thus in the approximate form g is specified by the initial conditions. 
In his original analytical calculations Taylor assumed g= 1, corresponding to the 
ideal Stoke’s flow. 

The equations are non-dimensionalized as follows: 

T = t/s, u= u/u,, v= v/u,, 

Q, = q,/U,. 

Yielding from (1): 

where R, = (2aU,/v,) is a fluid flow Reynolds number based on particle diameter 
and U, so it is constant for a given particle size and up-stream flow. Again, in the 
linear approximation Q, is held constant, while in Taylor’s original formulation Q, is 
a function of the dependent variable. 

ABSOLUTE ERROR ASSESSMENT 

The non-dimensional force magnitude in a two-dimensional flow is given by 

IFI = d<~x>’ + (F,K (3) 
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where 

F = LA dU 24 dV 

“R,C,dT 
and F,,=--. 

R,C, dT 

The absolute error E (i.e., Taylor force-Linearized force) per unit time step AT is 
found by substituting the right-hand side of (2) into (3): 

E = {[V- uf) Qsl’ + [(V- VJ Qs121v2 
- WJ- u,> t&l’+ [V’- Vr) ~,121”2/AT; 

all variables are evaluated at the end of the time step where T = To + AT, except &,, 
which is evaluated by the initial conditions as QS = Q,(T,,). After some manipulation 
the error becomes 

E = Q,V'o + AT) QsP'o +AT) - QATJ 
AT * 

Note that in the limit of vanishingly small AT this expression is zero, implying the 
obvious result that the Taylor force and the linearized force agree initially. 

Now expand the slip speed Q, in a Taylor series (neglecting second order terms) 
and substitute for Q&T,, + AT) in (4), yielding 

E = lQs<To> -f &<To> ATI &<To> + WW2 

= +g + [&To)]” AT + O(AT)2. 

This result can be interpreted as equating the absolute error per unit time step to the 
sum of the rate of change of the slip speed kinetic energy plus the slip acceleration 
squared multiplied by the time step. Physically such a situation is found at a 
stagnation point. The gas or liquid is decelerated to zero speed, however the higher 
inertia particles continue to move, giving rise to an increasing slip speed. In other 
examples, regions of high fluid shear can produce sudden changes in the particles slip 
speed. For flow towards a stagnation point the error is always positive. 

RELATIVE ERROR ESTIMATES 

The interpretation of (5) is of use in determining the source of errors, but an 
estimate of error as a function of time step, AT, is of greater pragmatic value. The 
Taylor equation (1) and linearized form (Q, = constant) are exactly integrable for the 
one dimensional flow of a fluid whose velocity varies slowly over a time step. 

In Taylor’s form we have, 

1 
TOfAT dU T,+AT 

TO 
(U - U,)’ = 

CdL 
24 i dT* To 



For the linearized case 
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(7) 

We have assumed that the drag coefficient is a weak function of particle speed over 
one time step. 

Equations (6) and (7) yield, respectively, 

(8) 

where Q,(T,-,) = Q, by definition. 
In Fig. 1 the relative error in the integrated slip speed (from Eqs. (8) and (9)) is 

plotted for various initial slip speeds Q,(T,) as a function of the reduced time step 
(AT C, R,/24). Typical industrial flows have reduced time steps varying between 
0.01 and 10.0. Particles traveling nearly with the fluid (i.e., small slip speed) have 
less relative error than particles with a high initial slip speed. This is because Eq. (5) 
predicts the linearized force to underestimate the Taylor force. From Eq. (1) we see 
the force increases with slip speed, hence the underestimation increases with initial 
slip speed. 

The enlarged detail in Fig. 1 indicates that the slip speed error can be made less 
than 1% if the reduced time step is less than 0.15. Furthermore the slope of the 

Reduced Time Step, AT C,RJ24 

FIG. 1. Analytically determined errors in the particle’s slip speeds as a function of the reduced time 
step of integration. The small inset figure has the same axes as the large figure, namely the percentage 
relative error versus the reduced time step. The error is always less than 1% if the reduced time step is 
less than 0.15. 
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curves in this magnified log-log is approximately 2.0. Thus the relative slip-speed 
error is proportional to the reduced time step squared. 

A typical particle integration routine such as a fourth order Runge-Kutta scheme 
has errors proportional to the time step raised to the fourth power. Hence errors in 
the linearized equations can exceed the global error of integration. 

However, in fluid regions of low shear the particle slip speeds are low and the 
linearization errors are small. This suggests a simple numerical method that can be 
incorporated in an integration routine with variable step size control. A local check 
of the reduced time step can be computed periodically and Eqs. (8) and (9) employed 
to determine an accurate upper bound on AT. In this way an algorithm with variable 
step size could efficiently exploit the linearized equations. 
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